4.8 Article

Norepinephrine as new functional monomer for molecular imprinting: An applicative study for the optical sensing of cardiac biomarkers

期刊

BIOSENSORS & BIOELECTRONICS
卷 157, 期 -, 页码 -

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2020.112161

关键词

Polynorepinephrine; Surface plasmon resonance; Molecular imprinting; Functional monomer; Troponin; Epitope imprinted biosensors

资金

  1. Italian Ministry of Education, University and Research (MIUR) through the Project Dipartimenti di Eccellenza 2018-2022
  2. Italian Ministry of Health (Section for the supervision and control of doping and for the protection of health in sports activities of the Technical Health Committee) [2018-4]

向作者/读者索取更多资源

The continuous research for alternatives to antibody-based detection drove, in the last decades, the development of numerous strategies. Molecularly imprinted polymers (MIPs) emerged thanks to the low-cost and long-term stability features, where the choice of natural functional monomer(s) represents the key step for efficient imprinting of biomolecules. The chemical structure of dopamine (DA), one of the most used natural functional monomers, provided the inspiration for this work. We wondered why norepinephrine (NE) that differs from dopamine only for an additional hydroxyl group was not investigated at all in biosensing applications. In fact, there is only one paper exploiting polynorepinephrine (PNE) in molecular recognition applications, taking advantage of molecular imprinting, but not for biosensing purposes. In contrast, hundreds of papers describe polydopamine-based sensors. Therefore, we firstly investigated how the additional hydroxyl group of NE could affect the properties of the resulting polymer, and how these properties could be exploited for biosensing applications. The results highlighted the reduced non-specific adsorption of proteins onto PNE with respect to dopamine polymer. Furthermore, as a case study, we successfully developed a PNE-based imprinted biosensor for the early detection of Troponin I, a crucial biomarker for heart failure, by coupling the MIP biosensor with surface plasmon resonance (SPR) detection. The results indicate the feasible use of imprinted PNE as synthetic receptor for biomolecules, opening new perspectives for this biopolymer, so far not considered, and encouraging further investigations on its potential application in biosensing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据