4.7 Article

Sodium acetate-mediated inhibition of histone deacetylase alleviates hepatic lipid dysregulation and its accompanied injury in streptozotocin-nicotinamide-induced diabetic rats

期刊

BIOMEDICINE & PHARMACOTHERAPY
卷 128, 期 -, 页码 -

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.biopha.2020.110226

关键词

Acetate; Diabetes; Histone deacetylase; Lipid; Liver; Metabolism

向作者/读者索取更多资源

Objective: Hepatic lipid dysregulation with consequent lipotoxicity remains critical in the progression of nonalcoholic fatty liver disease, a rising prevalent complication of diabetes mellitus particularly type 2 diabetes. Diabetes-associated hepatic complications are among the leading causes of liver-related morbidity and mortality worldwide. Short chain fatty acids (SCFAs) have been demonstrated to regulate glycemic metabolism but its effect on diabetes-driven hepatic perturbation is unknown. This study is therefore designed to investigate the effect of SCFAs, acetate on diabetes-characterised hepatic lipotoxicity, and plausible involvement of histone deacetylase (HDAC) activity. Methods: Adult male Wistar rats (230 - 260 g) were allotted into groups (n = 6/group) namely: control (vehicle; p.o.), sodium acetate (SAT)-treated (200 mg/kg), diabetic with/without SAT groups. Diabetes was induced by intraperitoneal injection of streptozotocin 65 mg/kg after a dose of nicotinamide 110 mg/kg. Results: Data from diabetic animals showed increased fasting glycemia and insulinemia, decreased insulin sensitivity and body weight with increased relative hepatic mass. It also revealed increased hepatic lipid, serum/hepatic malondialdehyde, tissue necrosis factor-alpha, uric acid, aspartate transaminase, alanine aminotransferase and decreased glutathione content with elevated hepatic HDAC. Histologically, the hepatic tissue was characterised with disrupted architecture, inflammation of central vein and foci of periportal and sinusoidal cellular infiltration. However, these alterations were attenuated by sodium acetate. Conclusion: The study demonstrates that diabetes mellitus drives hepatic lipotoxicity, characterised with lipid accumulation, excessive lipid peroxidation, pro-inflammation, depleted glutathione content and accompanied by increased HDAC activity. Besides, the study suggests that acetate ameliorates diabetes-associated hepatic lipotoxicity through HDAC suppression and enhancement of insulin sensitivity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据