4.8 Article

Construction and performance evaluation of Hep/silk-PLCL composite nanofiber small-caliber artificial blood vessel graft

期刊

BIOMATERIALS
卷 259, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2020.120288

关键词

Small-caliber blood vessel grafts; Vascular reconstruction; Regulate the microenvironment; Inhibit the proliferation of intima; Long-term patency; Composite nanofiber

资金

  1. Sanming Project of Medicine in Shenzhen [SZSM201801060]

向作者/读者索取更多资源

To meet the growing clinical demand for small-caliber blood vessel grafts to treat cardiovascular diseases, it is necessary to develop safe and long-term unobstructed grafts. In this study, a biodegradable graft made of composite nanofibers is introduced. A composite nanofiber core-shell structure was prepared by a combination of conjugate electrospinning and freeze-dry technology. The core fiber was poly(L-lactide-co-caprolactone) (PLCL)-based and the core fibers were coated with heparin/silk gel, which acted as a shell layer. This special structure in which the core layer was made of synthetic materials and the shell layer was made of natural materials took advantage of these two different materials. The core PLCL nanofibers provided mechanical support during vascular reconstruction, and the shell heparin/silk gel layer enhanced the biocompatibility of the grafts. Moreover, the release of heparin in the early stage after transplantation could regulate the microenvironment and inhibit the proliferation of intima. All of the graft materials were biodegradable and safe biomaterials, and the degradation of the graft provided space for the growth of regenerated tissue in the late stage of transplantation. Animal experiments showed that the graft remained unobstructed for more than eight months in vivo. In addition, the regenerated vascular tissue provided a similar function to that of autogenous vascular tissue when the graft was highly degraded. Thus, the proposed method produced a graft that could maintain long-term patency in vivo and remodel vascular tissue successfully.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据