4.7 Article

A label-free immunosensor for the sensitive detection of hepatitis B e antigen based on PdCu tripod functionalized porous graphene nanoenzymes

期刊

BIOELECTROCHEMISTRY
卷 133, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.bioelechem.2020.107461

关键词

Nanoenzymes; Peroxidase-like activity; PdCu TPs/PG; Hepatitis B e antigen

资金

  1. National Natural Science Foundation of China [21405095, 21575079, 21671121]
  2. Shandong Provincial Natural Science Foundation [ZR2018MB008, ZR2018MB012]

向作者/读者索取更多资源

Nanomaterials with enzyme properties possess excellent catalytic activity and stability. We prepared new nanoenzymes to construct a label-free electrochemical immunosensor for the detection of hepatitis B e antigen (HBe Ag). In this study, PdCu tripod (PdCu TP) functionalized porous graphene (PG) nanoenzymes (PdCu TPs/PG) were prepared through the in situ reduction of PdCu tripods onto porous graphene. The catalytic Michaelis-Menten kinetic parameters of PdCu TPs/PG are better than horseradish peroxidase (HRP) and show enhanced peroxidase-like activity. Therefore, we used PdCu TPs/PG to catalyse the electrochemically active matrix of H2O2 and generate the synergistically amplified current signal for the subsequent sensitive detection of HBe Ag. Due to the good conductivity, large specific surface area and synergistic amplification of PdCu TPs/PG, the quantitative detection of HBe Ag shows a detection limit of 20 fg.mL(-1) and linear range from 60 fg.mL(-1) to 100 ng.mL(-1). During the detection of human serum samples, PdCu TPs/PG shows good accuracy based on the standard addition method and a comparison with an ELISA. The prepared immunosensors exhibiting good selectivity, stability and reproducibility provide an important basis for determining the prognosis of hepatitis B and show potential applications in medical applications. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据