4.6 Article

Microglia dependent BDNF and proBDNF can impair spatial memory performance during persistent inflammatory pain

期刊

BEHAVIOURAL BRAIN RESEARCH
卷 390, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.bbr.2020.112683

关键词

Microglia; Pro-brain-derived neurotrophic factor (BDNF); Memory; Cell death; Inflammatory pain

资金

  1. Cognitive Sciences and Technologies Council, IR [5887]

向作者/读者索取更多资源

Inflammatory pain is commonly associated with cognitive impairment. However, its molecular mechanisms are poorly understood. Thus, this study was conducted to investigate the molecular mechanisms of behavioral changes associated with inflammatory pain. Briefly, 36 Wistar rats were randomly divided into two main groups: CFA group treated with 100 mu L of Complete Freunds' Adjuvant (CFA) and CFA + Minocycline group treated with 100 mu L of CFA+40 mg/kg/day of minocycline). After that, each group was divided into three subgroups based on different time points of the study. The pain was induced using CFA and subsequent behavioral changes (i.e., hyperalgesia and learning and spatial memory) were analyzed by the Morris Water Maze (MWM) task and Radiant Heat. Then, the cellular and molecular changes were assessed using Western Blotting, Immunohistochemistry, and Terminal deoxynucleotidyl transferase dUTP Nick End Labeling (TUNEL) techniques. Results of the study indicated that CFA-induced pain impaired spatial learning and memory functions. Studying the cellular changes showed that persistent inflammatory pain increased the microglial activity in CA1 and Dentate Gyrus (DG) regions. Furthermore, an increase was observed in the percentage of TUNEL-positive cells. Also, pro-Brain-Derived Neurotrophic Factor (BDNF)/BDNF ratio, Caspase3, and Receptor-Interacting Protein kinase 3 (RIP3) levels increased in the rats' hippocampus following induction of persistent inflammatory pain. These changes were reversed following the cessation of pain as well as the injection of minocycline. Taking together, the results of the current study for the first time revealed that an increase in the microglia dependent proBDNF/BDNF ratio following persistent inflammatory pain leads to cell death of the CA1 and DG neurons that subsequently causes a cognitive deficit in the learning and spatial memory functions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据