4.4 Article

Influence of long-term organic and conventional fertilization on bacterial communities involved in bioelectricity production from paddy field-microbial fuel cells

期刊

ARCHIVES OF MICROBIOLOGY
卷 202, 期 8, 页码 2279-2289

出版社

SPRINGER
DOI: 10.1007/s00203-020-01947-3

关键词

Plant-MFC; Conventional fertilization; Power density; Next generation sequencing; Geobacteraceae

向作者/读者索取更多资源

Soils are rich in organics, particularly those that support the growth of plants. These organics are possible sources of sustainable energy, and a microbial fuel cell (MFC) system can potentially be used for this purpose. In this, the soil organic content expelled from plant root was possibly converted into electrical energy through the microbial metabolic process. The integration of MFC systems with living plant root system is a novel approach, which will facilitate sustainable resource for energy production. Therefore, the objective of this study is to electrochemically evaluate the paddy field MFCs (PF-MFCs) performance and methane emission under organic and conventional fertilization systems in paddy fields, and its impact on bacterial communities involved in bioelectricity production. Graphite (anode) and carbon (cathode) electrode MFC systems were configured and assembled in organic and conventionally fertilized paddy fields. The anode and bulk soil-associated bacterial communities were examined using high-throughput Illumina MiSeq sequencing platform. Our results revealed that the maximum electricity production and power density were observed in CFPF-MFC with less methane emission compared to OFPF-MFC. The next-generation sequencing (NGS) libraries showed that the bacterial population was significantly increased in the organic-fertilized field and the enhanced occurrence of the Geobacteraceae family in CFPF-MFC anode. By enhancing Geobacteraceae occurrence on the anode, the conventional fertilization improved the bioelectricity production with less methane emission. Further extension in the establishment of plant MFCs in various sedimentary environments will solve the global energy crisis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据