4.6 Article

Ginsenoside Rd Attenuates DNA Damage by Increasing Expression of DNA Glycosylase Endonuclease VIII-like Proteins after Focal Cerebral Ischemia

期刊

CHINESE MEDICAL JOURNAL
卷 129, 期 16, 页码 1955-1962

出版社

WOLTERS KLUWER MEDKNOW PUBLICATIONS
DOI: 10.4103/0366-6999.187851

关键词

DNA Damage; DNA Glycosylase; Endonuclease VIII-like Proteins; Ginsenoside Rd; Ischemic Stroke

资金

  1. National Natural Science Foundation of China [81371365]

向作者/读者索取更多资源

Background: Ginsenoside Rd (GSRd), one of the main active ingredients in traditional Chinese herbal Panax ginseng, has been found to have therapeutic effects on ischemic stroke. However, the molecular mechanisms of GSRd's neuroprotective function remain unclear. Ischemic stroke-induced oxidative stress results in DNA damage, which triggers cell death and contributes to poor prognosis. Oxidative DNA damage is primarily processed by the base excision repair (BER) pathway. Three of the five major DNA glycosylases that initiate the BER pathway in the event of DNA damage from oxidation are the endonuclease VIII-like (NEIL) proteins. This study aimed to investigate the effect of GSRd on the expression of DNA glycosylases NEILs in a rat model of focal cerebral ischemia. Methods: NEIL expression patterns were evaluated by quantitative real-time polymerase chain reaction in both normal and middle cerebral artery occlusion (MCAO) rat models. Survival rate and Zea-Longa neurological scores were used to assess the effect of GSRd administration on MCAO rats. Mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) damages were evaluated by the way of real-time analysis of mutation frequency. NEIL expressions were measured in both messenger RNA (mRNA) and protein levels by quantitative polymerase chain reaction and Western blotting analysis. Apoptosis level was quantitated by the expression of cleaved caspase-3 and terminal deoxynucleotidyl transferase-mediated dUTP biotin nick end labeling assay. Results: We found that GSRd administration reduced mtDNA and nDNA damages, which contributed to an improvement in survival rate and neurological function; significantly up-regulated NEIL1 and NEIL3 expressions in both mRNA and protein levels of MCAO rats; and reduced cell apoptosis and the expression of cleaved caspase-3 in rats at 7 days after MCAO. Conclusions: Our results indicated that the neuroprotective function of GSRd for acute ischemic stroke might be partially explained by the up-regulation of NEIL1 and NEIL3 expressions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据