4.7 Article

Gas turbine minimum environmental load extension with compressed air extraction for storage

期刊

APPLIED THERMAL ENGINEERING
卷 180, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2020.115869

关键词

Flexibility; Gas turbine; Turndown; Emissions

资金

  1. European Union [764545]

向作者/读者索取更多资源

The fact that most renewable forms of energy are not available on-demand and are typically characterised by intermittent generation currently makes gas turbine engines an important source of back-up power. This study focuses on one of the capabilities that ensure that gas turbines are more flexible on the electric power grid. The capability here is the minimum environmental load that makes it possible to keep a gas turbine engine on the grid without a shut-down, to offer grid stability, adding inertia to the grid in periods when there is no demand for peak power from the engine. It is then desirable to operate the engine at the lowest possible load, without infringing on carbon monoxide emissions that becomes dominant. This paper demonstrates this potential through the extraction of the pressurised air from the back end of the compressor into an assumed energy storage system. The simulation of the engine performance using an in house tool shows the additional reduction of the power output when the maximum closing of variable inlet guide vane is complemented with air extractions. However, the identified key strategy for achieving a lower environmental load (with same carbon monoxide emission limit) is to always maintain the design flame temperature. This is contrary to the conventional approach that involves a decrease in such temperatures. Here, a 34% reduction in load was achieved with 24% of flow extraction. This is shown to vary with ambient temperatures, in favour of lower temperatures when the combustor inlet pressures are higher. The emission models applied were based on empirical correlations and shows that higher combustor inlet pressures, high but constant flame temperatures with core flow reduction is crucial to obtaining a low environmentally compliant load. The compressor analysis shows that choking is a noticeable effect at a higher rate of extractions; this is found to occur at the stages closest to the extraction location.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据