4.7 Article Proceedings Paper

Condensate droplet size distribution and heat transfer on hierarchical slippery lubricant infused porous surfaces

期刊

APPLIED THERMAL ENGINEERING
卷 176, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2020.115386

关键词

Slippery lubricant infused porous surfaces; Condensation phase-change; Heat transfer; Hierarchical SLIPS; Droplet size distribution; Heat transfer resistance based model

资金

  1. International Institute for Carbon-Neutral Energy Research (WPI-I2CNER)
  2. Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT)
  3. Japanese Society for the Promotion of Science (JSPS) KAKENHI, Japan [JP18K13703, JP16K18029]
  4. National Natural Science Foundation of China, China [51976117]
  5. Natural Science Foundation of Shanghai, China [19ZR1401700]

向作者/读者索取更多资源

In recent years, slippery lubricant infused porous surfaces (SLIPSs) have received important attention due to their excellent performance in applications such as condensation, low friction, self-cleaning and anti-icing, which is owed to the presence of an infused lubricant or oil effectively decreasing the liquid-solid interactions and enhancing droplet mobility when compared to hydrophobic and/or to superhydrophobic surfaces. In this work, we fabricate and make use of hierarchical micro-/nano-structured and nano-structured SLIPSs for condensation phase-change. Optical microscopy and macroscopic experimental observations are coupled to extract the droplet size distribution at different condensation times. Heat transfer resistance model through individual condensing droplets is further extended here to account for the presence of both micro- and nano-structures. Then, heat transfer through individual droplets is coupled to the droplet number density to estimate the heat transfer at different condensation times and their overall performance. A 100% greater heat transfer performance is reported on nano-structured SLIPSs when compared to hierarchical micro-/nano-structure SLIPSs due to the greater thermal resistance imposed by the micro-structures and the lubricant present within the structures. We conclude that although the presence of micro-structures shifts the droplet number density towards greater population of smaller sized droplets, this effect is not enough to overcome the greater heat transfer predicted on solely nano-structured SLIPSs. Findings presented here complement current research on SLIPSs and condensation phase-change heat transfer and are of great importance for the effective design of SLIPSs with enhanced condensation heat transfer performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据