4.7 Article

Resistive switching in atomic layer deposited HfO2/ZrO2 nanolayer stack

期刊

APPLIED SURFACE SCIENCE
卷 515, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2020.146015

关键词

Resistive switching; HfO2/ZrO2; Nanolayer; Interfaces

资金

  1. State Key Laboratory of Powder Metallurgy
  2. National Natural Science Foundation of China [U19A2087, 51672311]
  3. US National Science Foundation under ECCS Award [1709641]
  4. Directorate For Engineering
  5. Div Of Electrical, Commun & Cyber Sys [1709641] Funding Source: National Science Foundation

向作者/读者索取更多资源

The resistive switching properties of HfO2/ZrO2 nanolayers with the total thickness of 16 nm prepared using atomic layer deposition (ALD) were investigated. Current-voltage behavior, pulse time mode measurement, retention and endurance tests were carried out to characterize the memristive (memory-resistive) properties. Resistive switching was observed in all nanolayer stacks, and the set voltage (V-set) decreased with increasing the number of layers (i.e., increasing number of hafnia-zirconia interfaces). Grazing incidence x-ray diffraction (GI-XRD) results demonstrate that the hafnia transforms from monoclinic to orthorhombic crystal structure during the post metallization annealing. Shifts in the binding energy of the x-ray photoelectron spectra (XPS) implies the existence of hafnia and zirconia suboxide (HfO2-delta and ZrO2-delta). Moreover, the blocking nature of the inserted oxide/oxide interfaces serves as a barrier to oxygen ion/vacancy migration. It is shown that memristive/insulating nanostructures like HfO2/ZrO2 can help modulate the resistive switching of memristor-based devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据