4.7 Article

Structure and electron affinity of (1 1 (2)over-bar 0)-X 4H-SiC surface

期刊

APPLIED SURFACE SCIENCE
卷 518, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2020.145986

关键词

Silicon carbide; Surface modification; Density functional theory; eElectron affinity; Field emission

资金

  1. UK Engineering and Physical Sciences Research Council (EPSRC)

向作者/读者索取更多资源

Control over the chemical termination of SiC surfaces is of great importance for the material in high temperature and hostile environment applications, where 4H-SiC in particular enjoys frequent use in areas including sensors and MOSFETs. Despite this, a wealth of surface specific data for the 4H polytype is yet to be accounted for, even under the most basic of terminations. Detailed structural and surface electronic properties highlight areas in which the use of SiC can expand and excel. In this work, we report density functional calculations on the effect of electron affinity upon adsorption of a variety of elements and their stability on the non-polar (1 1 (2) over bar 0) surface. We find that monolayer hydrogen and lithium termination work to reduce the electron affinity to 1.86 eV and 0.08 eV respectively, whereas for fluorine and chlorine it increases to large positive values of 5.05 eV and 3.90 eV respectively. All reactions with the unterminated surface are exothermic. In addition, lithium termination generating a near zero electron affinity makes it an exciting potential application in the field of emission. Notably, the increased efficiency of cold cathode devices with negative electron affinity make this surface a candidate for further work into functionalised SiC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据