4.6 Article

Enhancing the soft magnetic properties of FeGa with a non-magnetic underlayer for microwave applications

期刊

APPLIED PHYSICS LETTERS
卷 116, 期 22, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/5.0007603

关键词

-

资金

  1. NSF Nanosystems Engineering Research Center for Translational Applications of Nanoscale Multiferroic Systems (TANMS) [EEC-1160504]

向作者/读者索取更多资源

An ultra-thin (similar to 2.5nm) non-magnetic Cu underlayer was found to have a significant effect on the microstructure, magnetic softness, and magnetostriction of sputter-deposited Fe81Ga19 (FeGa) thin films. Compared to the experimental control where FeGa was deposited directly on Si without an underlayer, the presence of Cu increased the in-plane uniaxial anisotropy of FeGa and reduced the in-plane coercivity by nearly a factor of five. The effective Gilbert damping coefficient was also significantly reduced by a factor of four, between FeGa on Si and FeGa on a Cu underlayer. The FeGa films on Cu also retained a high saturation magnetostriction comparable to those without an underlayer. The enhancement of the desirable magnetic properties for microwave applications is attributed to the Cu underlayer, promoting the (110) film texture and increasing the compressive film strain. The results demonstrated that the structural control is viable to simultaneously achieve the necessary magnetic softness and magnetostriction in FeGa for integration in strain-mediated magnetoelectric and microwave devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据