4.5 Article

Electroluminescence image analysis of a photovoltaic module under accelerated lifecycle testing

期刊

APPLIED OPTICS
卷 59, 期 22, 页码 G225-G233

出版社

OPTICAL SOC AMER
DOI: 10.1364/AO.391957

关键词

-

类别

资金

  1. Arizona Research Institute for Solar Energy
  2. Tucson Electric Power

向作者/读者索取更多资源

Electroluminescence (EL) imaging of Si-based photovoltaic (PV) modules is used widely to spatially detect and characterize electrical defects, including handling and degradation-induced cracking of the component Si cells that are associated with reductions in module performance. In the present study, a commercial polycrystalline silicon PV module was subjected to accelerated lifecycle test environmental conditions and examined as a function of environmental exposure time using EL imaging. The approach followed pixel intensity distributions over each individual PV cell and confirmed a positive correlation between module conversion efficiency and results of the image analysis. Overall, an average of a 2.5% reduction in normalized EL intensity was correlated to a 0.35% reduction in actual power conversion efficiency (or a 2.3% decrease in relative efficiency). The imaging analysis technique offers a rapid, unsupervised means to assess EL data in lieu of conventional visual interpretation. (C)2020 Optical Society of America.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据