4.7 Article

Numerical analysis of reinstallation of spudcans near footprints formed during prior installations

期刊

APPLIED OCEAN RESEARCH
卷 100, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apor.2020.102163

关键词

Jack-up; Spudcan-footprint interaction; Spudcan; Remoulded soil strength; Numerical modelling

资金

  1. Australian Research Council (ARC) [LP140100066]
  2. Centre for Offshore Foundation Systems (COFS)
  3. Australian Research Council [LP140100066] Funding Source: Australian Research Council

向作者/读者索取更多资源

This paper reports the effect of the remoulded soil strength of a footprint on the reinstallation of jack-up rigs near the footprint. The footprint creation is from an earlier spudcan penetration and extraction process in which the soil is remoulded. Dissipation of pore pressures between the footprint creation and jack-up reinstallation causes further consolidation of the soil around the footprint. Large-deformation finite-element (LDFE) analyses were performed using the Coupled Eulerian-Lagrangian (CEL) approach. A recently developed novel spudcan shape with a flat base and four holes is studied to mitigate spudcan-footprint interactions during spudcan reinstallation. The installation of a whole three-legged jack-up rig is modelled considering a simplified global jack-up unit. The LDFE results were validated against existing centrifuge test data prior to undertaking a detailed parametric study, assessing the effects of consolidation occurred after footprint creation, the offset distance of spudcan installation from the footprint centre, and spudcan shape. Compared to a footprint of the same shape, but virgin intact soil strength, the footprint with remoulded soil strength enhances the maximum horizontal force, maximum moment, maximum lateral displacement, and rotation, by 12-20%. The critical offset distance is found to be one spudcan diameter with the spudcan centre being at the crest of the footprint. The novel spudcan shape is shown to be effective at easing spudcan-footprint interactions, reducing horizontal force, moment, lateral displacement and rotation by about 50%; and total stress on the jack-up leg by 41%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据