4.6 Article

High-order Runge-Kutta discontinuous Galerkin methods with a new type of multi-resolution WENO limiters on triangular meshes

期刊

APPLIED NUMERICAL MATHEMATICS
卷 153, 期 -, 页码 519-539

出版社

ELSEVIER
DOI: 10.1016/j.apnum.2020.03.013

关键词

Runge-Kutta discontinuous Galerkin method; Multi-resolution WENO limiter; Non-oscillatory property; Triangular mesh

资金

  1. NSFC [11872210, 11826104]
  2. Science Challenge Project [TZ2016002]
  3. NSF [DMS-1719410]
  4. NSAF [U1630247]

向作者/读者索取更多资源

In this paper, high-order Runge-Kutta discontinuous Galerkin (RKDG) methods with multi-resolution weighted essentially non-oscillatory (WENO) limiters are designed for solving hyperbolic conservation laws on triangular meshes. These multi-resolution WENO limiters are new extensions of the associated multi-resolution WENO finite volume schemes [49,50] which serve as limiters for RKDG methods from structured meshes [47] to triangular meshes. Such new WENO limiters use information of the DG solution essentially only within the troubled cell itself which is identified by a new modified version of the original KXRCF indicator [24], to build a sequence of hierarchical L-2 projection polynomials from zeroth degree to the highest degree of the RKDG method. The second-order, third-order, and fourth-order RKDG methods with associated multi-resolution WENO limiters are developed as examples, which could maintain the original order of accuracy in smooth regions and keep essentially non-oscillatory property near strong shocks or contact discontinuities by gradually degrading from the highest order to the first order. The linear weights inside the procedure of the new multi-resolution WENO limiters can be any positive numbers on the condition that their sum equals one. This is the first time that a series of polynomials of different degrees within the troubled cell itself are applied in a WENO fashion to modify the DG solutions in the troubled cell on triangular meshes. These new WENO limiters are very simple to construct, and can be easily implemented to arbitrary high-order accuracy and in higher dimensions on unstructured meshes. Such spatial reconstruction methodology improves the robustness in the simulation on the same compact spatial stencil of the original DG methods on triangular meshes. Extensive one-dimensional (run as two-dimensional problems on triangular meshes) and two-dimensional tests are performed to demonstrate the effectiveness of these RKDG methods with the new multi-resolution WENO limiters. (C) 2020 IMACS. Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据