4.7 Review

The impact of metal pipe materials, corrosion products, and corrosion inhibitors on antibiotic resistance in drinking water distribution systems

期刊

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
卷 104, 期 18, 页码 7673-7688

出版社

SPRINGER
DOI: 10.1007/s00253-020-10777-8

关键词

Antimicrobial resistance; ARG; Microbiome; Public health; Biofilm

资金

  1. Arthur J. Schmitt Fellowship
  2. Marquette University Water Quality Center

向作者/读者索取更多资源

Drinking water distribution systems (DWDS) are unique engineering environments that are important routes for the acquisition and dissemination of antibiotic resistance. Antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in drinking water pose risks to human and environmental health. Metals are known stressors that can select for antibiotic resistance. The objective of this review was to assess the state of knowledge regarding the impact of metal pipe materials, corrosion products, and corrosion inhibitors on the prevalence of antibiotic resistance in DWDS. ARGs and mobile genetic elements (MGEs) have been detected in full-scale DWDS in concentrations ranging from similar to 10(1) to 10(10) copies/L. Metal pipe materials can select for bacteria harboring ARGs and metal resistance genes (MRGs) through co-selection processes. Corrosion products that develop in metal drinking water pipes (Cu, Fe, and Pb oxides) may also stimulate antibiotic resistance selection during distribution. Different corrosion inhibitor regimes (phosphates, sodium silicates) may also have impacts on microbial communities and the abundance of resistance genes in DWDS. Research is needed to quantify how engineering decisions related to drinking water infrastructure and corrosion inhibitor practices impact the abundance and distribution of ARG, MRGs, and MGEs in potable water systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据