4.7 Article

On variable and random shape Gaussian interpolations

期刊

APPLIED MATHEMATICS AND COMPUTATION
卷 377, 期 -, 页码 -

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.amc.2020.125159

关键词

-

资金

  1. Hong Kong Research Grant Council GRF Grants

向作者/读者索取更多资源

This work focuses on the invertibility of non-constant shape Gaussian asymmetric interpolation matrix, which includes the cases of both variable and random shape parameters. We prove a sufficient condition for that these interpolation matrices are invertible almost surely for the choice of shape parameters. The proof is then extended to the case of anisotropic Gaussian kernels, which is subjected to independent componentwise scalings and rotations. As a corollary of our proof, we propose a parameter free random shape parameters strategy to completely eliminate the need of users' inputs. By studying numerical accuracy in variable precision computations, we demonstrate that the asymmetric interpolation method is not a method with faster theoretical convergence. We show empirically in double precision, however, that these spatially varying strategies have the ability to outperform constant shape parameters in double precision computations. Various random distributions were numerically examined. (C) 2020 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据