4.8 Article

Environmental and economic multi-objective optimization of a household level hybrid renewable energy system by genetic algorithm

期刊

APPLIED ENERGY
卷 269, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2020.115058

关键词

Renewable energy production; Hybrid energy system; Life-cycle assessment; Multi-objective optimization; Genetic algorithm

资金

  1. National Research, Development and Innovation Fund (NKFIH) of Hungary [FIEK 16-12016-0007]
  2. National Research, Development and Innovation Fund Thematic Excellence Program [TUDFO/51757/2019-ITM]

向作者/读者索取更多资源

The rapid spread of renewables made it essential to design optimal hybrid renewable energy systems (HRES) with the distinctive economic and environmental impacts of each technology in mind. According to a comprehensive literature review, very few studies consider life-cycle environmental impacts in small-scale hybrid renewable energy system optimization. This paper aims to fill this gap by providing a multi-objective design framework for household-scale systems based on the technical modeling of several typical components. Solar photovoltaic, wind turbine, solar heat collector, heat pump, heat storage, battery, and as a novelty, heat insulation thickness are considered. Backup power is either drawn from the grid or produced by a diesel generator in grid-connected and off-grid scenarios, respectively. Single objective optimization using genetic algorithm resulted in the least cost and the least environmental footprint options in a case study of three different locations across Europe. Then, Pareto-optimal solutions between the two extremities were explored with a multi-objective genetic algorithm. Single objective results show substantial differences between environmental and economic optima, while multi-objective optimization proved to be an efficient tool to investigate the trade-offs between the two conflicting goals. Solar photovoltaics is proved to be the most competitive technology to reduce environmental impacts in the case of grid-connected systems. Off-grid systems, however, benefit the most from a balanced mix of different renewable energy sources. Life-cycle impacts in the design of systems involving renewables is proven to be relevant while potential applications of the framework are also revealed. Further research areas, as well as the limitations of the methodology are identified in the conclusion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据