4.8 Article

Numerical investigation of cycle performance in compressed air energy storage in aquifers

期刊

APPLIED ENERGY
卷 269, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2020.115044

关键词

Aquifers; Compressed air energy storage; Numerical model; Cycles; Energy recovery efficiency

资金

  1. Chinese Academy of Geological Sciences, China [DD20201165, JYYWF20180301, JKY202004, YWF201903, 2019YFB1504102, DD20190707]
  2. Dr. Lawrence Ho Research and Development Fund

向作者/读者索取更多资源

Compressed air energy storage (CAES) is one of the promising technologies to store the renewable energies such as surplus solar and wind energy in a grid scale. Due to the widespread of aquifers in the world, the compressed air energy storage in aquifers (CAESA) has advantages compared with the compressed air energy storage in caverns and air tanks. The feasibility of aquifers as storage media in CAES system has been demonstrated by numerical models and field tests. This study proposes a numerical model by Transport of Unsaturated Groundwater and Heat Version 3.0/Equation-of-State 3 (TOUGH3/EOS3) to simulate a field-scale study of a novel CAES by storing the compressed air in aquifers. The feasibility of the model has been demonstrated by comparison of simulation results and monitoring data. After that, three types of cycles, which are daily cycle, weekly cycle and monthly cycle, are designed to study their performance within a month working cycle. Their gas saturation show small differences after one month cycle. When the air with temperature of 50 degrees C injected into aquifers with temperature of 20 degrees C, after the cycle finished, the air temperature in aquifer of daily cycle are 5.4 degrees C higher than that of weekly cycle and 10.8 degrees C higher than that of monthly cycle. It is indicated that during the same cycle periods, the more cycle times, the higher air temperature in aquifers after the cycle. The energy recovery efficiencies for daily cycle, weekly cycle and monthly cycle are 96.96%, 96.27% and 93.15%, respectively. The slight increase of energy recovery efficiencies from daily cycle to monthly cycle indicate that with the same energy storage scales, the energy produced by daily cycle has slight competitiveness. The simulation results can provide references for engineering application in future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据