4.8 Article

Broadband photocatalysts enabled by 0D/2D heterojunctions of near-infrared quantum dots/graphitic carbon nitride nanosheets

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 270, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apcatb.2020.118879

关键词

Broadband photocatalyst; NIR-responsive; Quantum dots; g-C3N4; Charge transfer

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC) (Canadian Solar Inc.)
  2. Fonds de recherche du Quebec-Nature et technologies (FRQNT)
  3. China Scholarship Council (CSC) [201506220152]
  4. FRQNT [258513]

向作者/读者索取更多资源

A heterojunction made of 0D near-infrared (NIR)-responsive PbS@CdS@ZnS core@shell@shell quantum dots (PCZ QDs) and 2D graphitic carbon nitride (g-C3N4) nanosheets was rationally constructed herein. In addition to some typical advantages of 0D/2D composites, such as short required charge-diffusion distance and high charge mobility, our designed PCZ QDs/g-C3N4 photocatalysts offer additional beneficial features. The broadband optical absorption of high-quality PCZ QDs highly dispersed on g-C3N4 nanosheets and their strong interaction yield efficient charge transfer between them and endow PCZ QDs/g-C3N4 with high photocatalytic activity from ultraviolet to NIR regions. With the optimized QDs loading level, the achieved, normalized rate constant is higher than the best-reported value for NIR-driven photocatalysis. PCZ QDs/g-C3N4 possesses good recycling performance and no metal release was detected in the solution after photocatalysis. This work highlights the great potential of QDs/g-C3N4 0D/2D photocatalysts in realizing high-efficiency broadband photocatalysis and functional optoelectronic devices for full solar spectrum exploitation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据