4.8 Article

Probing the enhanced methanol electrooxidation mechanism on platinum-metal oxide catalyst

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 280, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apcatb.2020.119393

关键词

Electrocatalytic methanol oxidation; Platinum-metal oxide composite catalyst; Reaction mechanism identification; Spectroelectrochemistry; DFT calculations

资金

  1. NSFC of MOST [21733004]
  2. International Cooperation Program of STCSM [17520711200]
  3. National Basic Research Program of China (973 Program) [2015CB932303]
  4. EPSRC [EP/I013229/1]
  5. Royal Society
  6. Newton Fund [NAFR1191294]
  7. Shanghai Sailing Program [20YF1420500]
  8. EPSRC [EP/I013229/1] Funding Source: UKRI

向作者/读者索取更多资源

The study employs Pt-SnO2 nanoflakes as a catalyst, where the electronic structure manipulation favors the selective enhancement of the non-CO pathway for electrochemical methanol oxidation reaction.
Pt-metal oxide nanocomposites are classified as an alternative promising catalyst besides Pt-Ru nanoalloys for electrochemical methanol oxidation reaction (MOR), and yet the relevant enhancement mechanism for MOR remains largely elusive in terms of catalyst functions and reaction pathways. Herein, interface-rich Pt-SnO2 nanoflakes supported on reduced graphene oxide have been prepared and employed as a model catalyst for such a study. X-ray photoelectron spectroscopy and X-ray absorption spectroscopy measurements reveal significant electronic structure modification on Pt in contact with SnO2, concomitant with enhanced MOR. In-situ surface enhanced infrared absorption spectroscopy and on-line differential electrochemical mass spectrometry measurements indicate that the non-CO pathway is selectively enhanced on Pt-SnO2 compared to the CO pathway which prevails on Pt. DFT calculations reinforce that this electronic structure manipulation favors the non-CO reaction pathway on Pt-SnO2.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据