4.6 Article

Fast and Facile Biodegradation of Polystyrene by the Gut Microbial Flora of Plesiophthalmus davidis Larvae

期刊

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.01361-20

关键词

plastic wastes; polystyrene; biodegradation; Plesiophthalmus davidis; insect larvae; gut flora

向作者/读者索取更多资源

Polystyrene (PS), which accounts for a significant fraction of plastic wastes, is difficult to biodegrade due to its unique molecular structure. Therefore, biodegradation and chemical modification of PS are limited. In this study, we report PS biodegradation by the larvae of the darkling beetle Plesiophthalmus davidis (Coleoptera: Tenebrionidae). In 14 days, P. davidis ingested 34.27 +/- 4.04 mg of Styrofoam (PS foam) per larva and survived by feeding only on Styrofoam. Fourier transform infrared spectroscopy confirmed that the ingested Styrofoam was oxidized. Gel permeation chromatography analysis indicated the decrease in average molecular weight of the residual PS in the frass compared with the feed Styrofoam. When the extracted gut flora was cultured for 20 days with PS films, biofilm and cavities were observed by scanning electron microscopy and atomic force microscopy. X-ray photoelectron spectroscopy (XPS) studies revealed that C-O bonding was introduced into the biodegraded PS film. Serratia sp. strain WSW (KCTC 82146), which was isolated from the gut flora, also formed a biofilm and cavities on the PS film in 20 days, but its degradation was less prominent than the gut flora. XPS confirmed that C-O and C=O bonds were introduced into the biodegraded PS film by Serratia sp. WSW. Microbial community analysis revealed that Serratia was in the gut flora in significant amounts and increased sixfold when the larvae were fed Styrofoam for 2 weeks. This suggests that P. davidis larvae and its gut bacteria could be used to chemically modify and rapidly degrade PS. IMPORTANCE PS is widely produced in the modern world, but it is robust against biodegradation. A few studies reported the biodegradation of PS, but most of them merely observed its weight loss; fewer were able to find its chemical modifications, which are rather direct evidence of biodegradation, by using limited organisms. Therefore, it is required to find an effective way to decompose PS using various kinds of organisms. Herein, we discovered a new PS-degrading insect species and bacterial strain, and we found that the genus that includes the PS-degrading bacterial strain occurs in significant amounts in the larval gut flora, and the proportion of this genus increased as the larvae were fed Styrofoam. Our research offers a wider selection of PS-degrading insects and the possibility of using a certain mixture of bacteria that resemble the gut flora of a PS-degrading insect to biodegrade PS, and thus could contribute to solving the global plastic crisis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据