4.8 Article

Inertial Microfluidic Purification of Floating Cancer Cells for Drug Screening and Three-Dimensional Tumor Models

期刊

ANALYTICAL CHEMISTRY
卷 92, 期 17, 页码 11558-11564

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.0c00273

关键词

-

资金

  1. National Natural Science Foundation of China [51705257]
  2. Natural Science Foundation of Jiangsu Province [BK20170839]
  3. Griffith University
  4. Australian Research Council (ARC) [DP180100055]
  5. Japan Society for the Promotion of Science

向作者/读者索取更多资源

Floating cancer cells can survive the programmed death anoikis process after detaching from the extracellular matrix for the anchorage-dependent cells. Purification of viable floating cancer cells is essential for many biomedical studies, such as drug screening and cancer model development. However, the floating cancer cells are mixed with dead cells and debris in the medium supernatant. In this paper, we developed an inertial microfluidic device with sinusoidal microchannels to continuously remove dead cells and debris from viable cells. First, we characterized the differential inertial focusing properties of polystyrene beads in the devices. Then, we investigated the effects of flow rate on inertial focusing of floating MDA-MB-231 cells. At an optimal flow condition, purification of viable cells was performed and the purity of live cells was increased significantly from 19.9% to 76.6%, with a recovery rate of 69.7%. After separation, we studied and compared the floating and adherent MDA-MB-231 cells in terms of cell proliferation, protrusive cellular structure, and the expression of cyclooxygenase (Cox-2) which is related to epithelial-mesenchymal transition (EMT) changes. Meanwhile, drug screening of both floating and adherent cancer cells was conducted using a chemotherapeutic drug, doxorubicin (Dox). The results revealed that the floating cancer cells possess 30-fold acquired chemoresistance as compared to the adherent cancer cells. Furthermore, a three-dimensional (3D) double-cellular coculture model of human mammary fibroblasts (HMF) spheroid and cancer cells using the floating liquid marble technique was developed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据