4.8 Article

Nanoscale Probing of Liposome Encapsulating Drug Nanocrystal Using Atomic Force Microscopy-Infrared Spectroscopy

期刊

ANALYTICAL CHEMISTRY
卷 92, 期 14, 页码 9922-9931

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.0c01465

关键词

-

资金

  1. Australian Research Council [LP160101498]
  2. Aradigm Corporation
  3. Australian Research Council [LP160101498] Funding Source: Australian Research Council

向作者/读者索取更多资源

Use of liposomes encapsulating drug nanocrystals for the treatment of diseases like cancer and pulmonary infections is gaining attention. The potential therapeutic benefit of these engineered formulations relies on maintaining the physical integrity of the liposomes and the stability of the encapsulated drug. With the significant advancement in the microscopic and analytical techniques, analysis of the size and size distribution of these nanosized vesicles is possible. However, due to the limited spatial resolution of conventional vibrational spectroscopy techniques, the chemical composition of individual nanosized liposome cannot be resolved. To address this limitation, we applied atomic force microscopy infrared spectroscopy (AFM-IR) to assess the chemical composition of individual liposomes encapsulating ciprofloxacin in dissolved and nanocrystalline form. Spatially resolved AFM-IR spectra acquired from individual liposomes confirmed the presence of peaks related to N-H bending vibration, C-N stretching and symmetric, and asymmetric vibration of the carboxyl group present in the ciprofloxacin. Our results further demonstrated the effectiveness of AFM-IR in differentiating the liposome containing ciprofloxacin in dissolved or nanocrystalline form. Spectra acquired from dissolved ciprofloxacin had peaks related to the ionised carboxyl group, i.e., at 1576 and 1392 cm(-1), which were either absent or far weaker in intensity in the spectra of liposomal sample containing ciprofloxacin nanocrystals. These findings are highly significant for pharmaceutical scientists to ascertain the stability and physicochemical composition of individual liposomes and will facilitate the design and development of liposomes with greater therapeutic benefits.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据