4.8 Article

Microorganism@UiO-66-NH2 Composites for the Detection of Multiple Colorectal Cancer-Related microRNAs with Flow Cytometry

期刊

ANALYTICAL CHEMISTRY
卷 92, 期 18, 页码 12338-12346

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.0c02017

关键词

-

资金

  1. National Natural Science Foundation of China [21675057]
  2. National Key Research and Development Program of China [2016YFD0500900]
  3. Fundamental Research Funds for the Central Universities [2662018PY054]

向作者/读者索取更多资源

High-throughput analyses of multitarget markers can facilitate rapid and accurate clinical diagnosis. Suspension array assays, a flow cytometry-based analysis technology, are among some of the most promising multicomponent analysis methods for clinical diagnostics and research purposes. These assays are appropriate for examining low-volume, complex samples having trace amounts of analytes due to superior elimination of background. Physical shape is an important and promising code system, which uses a set of visually distinct patterns to identify different assay particles. Here, we presented a morphology recognizable suspension arrays based on the microorganisms with different morphologies. In this study, UiO-66-NH2 (UiO stands for University of Oslo) metal-organic frameworks (MOFs), was wrapped on the microorganism surface to form an innovative class of microorganism@UiO-66-NH2 composites for suspension array assays. The use of microorganisms endowed composites barcoding ability with their different morphology and size. Meanwhile, the UiO-66-NH2 provided a stable rigid shell, large specific surface area, and metal(IV) ions with multiple binding sites, which could simplify the protein immobilization procedure and enhance detection sensitivity. With this method, simultaneous detection of three colorectal cancer-related microRNA (miRNA), including miRNA-21, miRNA-17, and miRNA-182, could be easily achieved with femtomolar sensitivity by using a commercial flow cytometer. The synergy between microorganisms and MOFs make the composites a prospective barcoding candidate with excellent characteristics for multicomponent analysis, offering great potential for the development of high throughput and accurate diagnostics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据