4.8 Review

Crystallization in Confinement

期刊

ADVANCED MATERIALS
卷 32, 期 31, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202001068

关键词

biomineralization; colloidal crystallization; geochemistry; porous media

资金

  1. European Research Council (ERC) under the project DYNAMIN [788968]
  2. Engineering and Physical Sciences Research Council (EPSRC) Programme Grant - Crystallization in the Real World consortium, an EPSRC Platform Grant [EP/R018820/1, EP/N002423/1]
  3. EPSRC [EP/R018820/1, EP/N002423/1] Funding Source: UKRI
  4. European Research Council (ERC) [788968] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

Many crystallization processes of great importance, including frost heave, biomineralization, the synthesis of nanomaterials, and scale formation, occur in small volumes rather than bulk solution. Here, the influence of confinement on crystallization processes is described, drawing together information from fields as diverse as bioinspired mineralization, templating, pharmaceuticals, colloidal crystallization, and geochemistry. Experiments are principally conducted within confining systems that offer well-defined environments, varying from droplets in microfluidic devices, to cylindrical pores in filtration membranes, to nanoporous glasses and carbon nanotubes. Dramatic effects are observed, including a stabilization of metastable polymorphs, a depression of freezing points, and the formation of crystals with preferred orientations, modified morphologies, and even structures not seen in bulk. Confinement is also shown to influence crystallization processes over length scales ranging from the atomic to hundreds of micrometers, and to originate from a wide range of mechanisms. The development of an enhanced understanding of the influence of confinement on crystal nucleation and growth will not only provide superior insight into crystallization processes in many real-world environments, but will also enable this phenomenon to be used to control crystallization in applications including nanomaterial synthesis, heavy metal remediation, and the prevention of weathering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据