4.8 Article

Enabling Superior Sodium Capture for Efficient Water Desalination by a Tubular Polyaniline Decorated with Prussian Blue Nanocrystals

期刊

ADVANCED MATERIALS
卷 32, 期 33, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201907404

关键词

capacitive deionization; Faradaic electrodes; polyaniline; Prussian blue; water desalination

向作者/读者索取更多资源

The application of electrochemical energy storage materials to capacitive deionization (CDI), a low-cost and energy-efficient technology for brackish water desalination, has recently been proven effective in solving problems of traditional CDI electrodes, i.e., low desalination capacity and incompatibility in high salinity water. However, Faradaic electrode materials suffer from slow salt removal rate and short lifetime, which restrict their practical usage. Herein, a simple strategy is demonstrated for a novel tubular-structured electrode, i.e., polyaniline (PANI)-tube-decorated with Prussian blue (PB) nanocrystals (PB/PANI composite). This composite successfully combines characteristics of two traditional Faradaic materials, and achieves high performance for CDI. Benefiting from unique structure and rationally designed composition, the obtained PB/PANI exhibits superior performance with a large desalination capacity (133.3 mg g(-1)at 100 mA g(-1)), and ultrahigh salt-removal rate (0.49 mg g(-1)s(-1)at 2 A g(-1)). The synergistic effect, interfacial enhancement, and desalination mechanism of PB/PANI are also revealed through in situ characterization and theoretical calculations. Particularly, a concept for recovery of the energy applied to CDI process is demonstrated. This work provides a facile strategy for design of PB-based composites, which motivates the development of advanced materials toward high-performance CDI applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据