4.8 Article

2D Material Enabled Offset-Patterning with Atomic Resolution

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 30, 期 40, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202004370

关键词

2D material; atomic precision; etch selectivity; high resolution lithography

资金

  1. Academia Sinica [AS-iMATE-108-32]
  2. Ministry of Science and Technology, Taiwan [108-2112-M-001-040-MY3, 107-2112-M-002-004-MY3]

向作者/读者索取更多资源

Atomic-precision patterning at large scale is a central requirement for nanotechnology and future electronics that is hindered by the limitations of lithographical techniques. Historically, imperfections of the fabrication tools have been compensated by multi-patterning using sequential lithography processes. The realization of nanometer-scale features from much larger patterns through offset stacking of atomically thin masks is demonstrated. A unique mutual stabilization effect between two graphene layers produces atomically abrupt transitions that selectively expose single-layer covered regions. Bilayer regions, on the other hand, protect the underlying substrate from removal for several hours permitting transfer of atomic thickness variations into lateral features in various semiconductors. Nanoscopic offsets between two 2D materials layers could be introduced through bottom-up and top-down approaches, opening up new routes for high-resolution patterning. A self-aligned templating approach yields nanometer-wide bilayer graphene nanoribbons with macroscopic length that produces high-aspect-ratio silicon nanowalls. Moreover, offset-transfer of lithographically patterned graphene layers enables multipatterning of large arrays of semiconductor features whose resolution is not limited by the employed lithography and could reach <10 nm feature size. The results open up a new route to combining design flexibility with unprecedented resolution at large scale.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据