4.8 Article

Mechanical Properties Tailoring of 3D Printed Photoresponsive Nanocellulose Composites

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 30, 期 35, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202002914

关键词

cellulose nanocrystals; direct ink writing; mechanical adaptation; photoresponsiveness; secondary crosslinking

资金

  1. Swiss National Science Foundation [200021_178941/1]
  2. Swiss National Science Foundation (SNF) [200021_178941] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

3D printing technologies allow control over the alignment of building blocks in synthetic materials, but compositional changes often require complex multimaterial printing steps. Here, 3D printable materials showing locally tunable mechanical properties are produced in a single printing step of Direct Ink Writing. These new inks consist of a polymer matrix bearing biocompatible photoreactive cinnamate derivatives and up to 30 wt% of anisotropic cellulose nanocrystals. The printed materials are mechanically versatile and can undergo further crosslinking upon illumination. When illuminating the material and controlling the irradiation doses, the Young's moduli can be adjusted between 15 and 75 MPa. Moreover, spatially controlled illumination allows patterning stiff geometries, resulting in 3D printed structures with segments of different mechanical properties tailoring the mechanical behavior under compression. The high design freedom implemented by 3D printing and photopatternability opens the venue to rapid manufacturing of devices for applications such as prosthetics or soft robotics where the 3D shapes and mechanical properties must be tailored for personalized load cases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据