4.8 Article

Toward the New Generation of Surgical Meshes with 4D Response: Soft, Dynamic, and Adaptable

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 30, 期 36, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202004145

关键词

dynamic devices; polypropylene meshes; surgical implants; thermosensitive hydrogels

资金

  1. European Union [796292]
  2. MINECO [RTI2018-098951-B-I00]
  3. Agencia de Gestio d'Ajuts Universitaris i de Recerca [2017SGR359]

向作者/读者索取更多资源

Herein, a facile approach toward transforming a 2D polypropylene flexible mesh material into a 4D dynamic system is presented. The versatile platform, composed by a substrate of knitted fibers of isotactic polypropylene (iPP) mesh and a coating of thermosensitive poly(N-isopropylacrylamide-co-N,N'-methylene bis(acrylamide) (PNIPAAm-co-MBA) hydrogel, covalently bonded to the mesh surface, after cold-plasma surface treatment and radical polymerization, is intended to undergo variations in its geometry via its reversible folding/unfolding behavior. The study is the first to trace the 3D movement of a flat surgical mesh, intended to repair hernia defects, under temperature and humidity control. An infrared thermographic camera and an optical microscope are used to evaluate the macroscopic and microscopic structure stimulus response. The presence of the PP substrate and the distribution of the gel surrounding the PP threads, affect both the PNIPAAM gel expansion/contraction as well as the time of folding/unfolding response. Furthermore, PP-g-PNIPAAm meshes show an increase in the bursting strength of approximate to 16% with respect to the uncoated mesh, offering a strongest and adaptable system for its future implantation in human body. The findings reported offer unprecedented application possibilities in the biomedical field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据