4.8 Review

From Arteries to Capillaries: Approaches to Engineering Human Vasculature

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 30, 期 37, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201910811

关键词

engineered microvasculature; tissue engineered blood vessels; tissue engineering; tissue vascularization

资金

  1. NIH [EB025765, EB027062, HL076485]
  2. NSF [NSF16478, DGE1644869]
  3. NYSTEM [C32606GG]

向作者/读者索取更多资源

From microscaled capillaries to millimeter-sized vessels, human vasculature spans multiple scales and cell types. The convergence of bioengineering, materials science, and stem cell biology has enabled tissue engineers to recreate the structure and function of different hierarchical levels of the vascular tree. Engineering large-scale vessels aims to replace damaged arteries, arterioles, and venules and their routine application in the clinic may become a reality in the near future. Strategies to engineer meso- and microvasculature are extensively explored to generate models for studying vascular biology, drug transport, and disease progression as well as for vascularizing engineered tissues for regenerative medicine. However, bioengineering tissues for transplantation has failed to result in clinical translation due to the lack of proper integrated vasculature for effective oxygen and nutrient delivery. The development of strategies to generate multiscale vascular networks and their direct anastomosis to host vasculature would greatly benefit this formidable goal. In this review, design considerations and technologies for engineering millimeter-, meso-, and microscale vessels are discussed. Examples of recent state-of-the-art strategies to engineer multiscale vasculature are also provided. Finally, key challenges limiting the translation of vascularized tissues are identified and perspectives on future directions for exploration are presented.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据