4.2 Article

Differentiation of NSC-34 cells is characterized by expression of NGF receptor p75, glutaminase and NCAM L1, activation of mitochondria, and sensitivity to fatty acid intervention

期刊

ACTA HISTOCHEMICA
卷 122, 期 5, 页码 -

出版社

ELSEVIER GMBH
DOI: 10.1016/j.acthis.2020.151574

关键词

ADAM10; Myelin basic protein; NGF p75 receptor; Oleic acid; Palmitic acid; Pyruvate dehydrogenase

向作者/读者索取更多资源

Motor neuronal damage due to diseases, traumatic insults or de-afferentation of the spinal cord is often incurable because of poor intrinsic regenerative capacity. Hence, medical basic research has to provide a better understanding of development-/regeneration-related cellular processes as only way to develop new and successful therapeutic strategies. Here, we investigated the neuronal differentiation of the NSC-34 hybrid cell line, which is an accepted model for spinal cord motor neurons. Their differentiation was stimulated by switching from normal to differentiation medium and by supplementation with palmitic and oleic acid. To characterize neuro-differentiation of NSC-34 cells, expression of nicotinic acetylcholine receptor alpha 4, NGF p75 receptor, IGF I alpha receptor, glutaminase, NCAM L1, ADAM10 and myelin basic protein as well as activation of mitochondria were analyzed. Both switch from normal to differentiation medium and fatty acid application stimulated NSC-34 differentiation. Differentiation was characterized by diminishing expression of the nicotinic acetylcholine receptor alpha 4 and enhancing expression of the NGF receptor p75, of glutaminase, of NCAM L1 and it's partially transformation from the cell surface into the cell. Fatty acid intervention stabilized the expression of the nicotinic acetylcholine receptor alpha 4, diminished the expression of the NGF receptor p75, consolidated the expression profile of NCAM L1, and intensified the expression of the relevant for NCAM L1 cleavage ADAM10. However, NCAM L1 cleavage itself was unaffected by fatty acid intervention, as was the differentiation-relevant activation of mitochondria and their transformation into neuronal filopodia.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据