4.8 Article

CO2-Oxidized Ti3C2Tx-MXenes Components for Lithium-Sulfur Batteries: Suppressing the Shuttle Phenomenon through Physical and Chemical Adsorption

期刊

ACS NANO
卷 14, 期 8, 页码 9744-9754

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.0c01452

关键词

MXenes; CO2 treatment; separator; TiO2; lithium-sulfur batteries

资金

  1. Global Research Development Center Program (NNFC-KAIST-Drexel-SMU FIRST Nano Co-op Center) [NRF-2015K1A4A3047100]
  2. Korea CCS R&D Center - Ministry of Science, ICT, Future Planning [NRF-2014M1A8A1049297]
  3. [NRF-2015M3A7B6027973]

向作者/读者索取更多资源

Lithium-sulfur (Li-S) batteries are one of the main challenges facing Li-ion technology because the insulating nature of sulfur and the shuttle phenomenon of dissolved lithium polysulfides (LPSs) in liquid electrolytes result in critical problems, including low Coulombic efficiency, loss of active material, and rapid capacity decay. Here, we oxidized delaminated transition metal carbides (MXenes) using CO2 (Oxi-d-MXenes) and used them as both cathode electrode with sulfur and modified separator coated onto the glass fiber without a conductive material and binder to suppress the diffusion of LPSs. Oxi-d-MXenes annealed at 900 degrees C using CO2 gas formed perfectly converted rutile-TiO2 nanocrystalline particles on their two-dimensional sheets. Li-S batteries fabricated with the Oxi-d-MXenes cathode and the Oxi-d-MXenes-modified separator exhibited high Coulombic efficiency (nearly 99%) and retained a capacity of about 900 mAh g(-1) after 300 cycles at a current density of IC. These results were attributed to the chemical and physical adsorption between the Oxi-d-MXenes and the LPSs. Our results imply that Oxid-MXenes prepared by the CO2 treatment exhibit physical and electrochemical properties that enhance the performance of Li-S batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据