4.6 Article

Unveiling of Swainsonine Biosynthesis via a Multibranched Pathway in Fungi

期刊

ACS CHEMICAL BIOLOGY
卷 15, 期 9, 页码 2476-2484

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acschembio.0c00466

关键词

-

资金

  1. National Natural Science Foundation of China [31530001]
  2. Shanghai Academic/Technology Researcher Leader Program [18XD1404500]

向作者/读者索取更多资源

The indolizidine alkaloid swainsonine (SW) is a deadly mycotoxin to livestock that can be produced by different plant-associated fungi, including the endophytic entomopathogenic fungi Metarhizium species. The SW biosynthetic gene cluster has been identified but the genetic mechanism of SW biosynthesis remains obscure. To unveil the SW biosynthetic pathway, we performed gene deletions in M. robertsii, heterologous expression of a core biosynthetic gene, substrate feedings, mass spectrometry, and bioassay analyses in this study. It was unveiled that SW is produced via a multibranched pathway by the hybrid non-ribosomal peptide-polyketide synthase (NRPS-PKS) gene cluster in M. robertsii. The precursor pipecolic acid can be converted from lysine by both the SW biosynthetic cluster and the unclustered genes such as lysine cyclodeaminase. The hybrid NRPS-PKS enzyme produces three intermediates with and without domain skipping. Intriguingly, the biosynthetic process is coupled with the cis to trans nonenzymatic epimerization of C1-OH for both hydroxyl- and dihydroxyl-indolizidine intermediates. We also found that SW production was dispensable for fungal colonization of plants and infection of insect hosts. Functional characterization of the SW biosynthetic genes in this study may benefit the safe use of Metarhizium fungi as insect biocontrol agents and the management of livestock pastures from SW contamination by genetic manipulation of the toxin -producing fungi.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据