4.8 Article

MOF-Derived Bimetallic CoFe-PBA Composites as Highly Selective and Sensitive Electrochemical Sensors for Hydrogen Peroxide and Nonenzymatic Glucose in Human Serum

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 12, 期 31, 页码 35365-35374

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.0c09689

关键词

metal-organic frameworks; Prussian blue analogues; electrochemical sensors; glucose; hydrogen peroxide

资金

  1. National Natural Science Foundation of China [21871156]
  2. Zhejiang Provincial Natural Science Foundation of China [LY18B010004]
  3. Zhejiang Provincial Education Fund of China [Y201737172]
  4. Natural Science Foundation of Ningbo [2018A610066]
  5. K.C. Wong Magna Fund of Ningbo University

向作者/读者索取更多资源

The fabrication of two-dimensional (2D) metal-organic frameworks (MOFs) and Prussian blue analogues (PBAs) combines the advantages of 2D materials, MOFs and PBAs, resolving the poor electronic conductivity and slow diffusion of MOF materials for electrochemical applications. In this work, 2D leaflike zeolitic imidazolate frameworks (Co-ZIF and Fe-ZIF) as sacrificial templates are in situ converted into PBAs, realizing the successful fabrication of PBA/ZIF nanocomposites on nickel foam (NF), namely, CoCo-PBA/Co-ZIF/NF, FeFe-PBA/Fe-ZIF/NF, CoFe-PBA/Co-ZIF/NF, and Fe/CoCo-PBA/Co-ZIF/NF. Such fabrication can effectively reduce transfer resistance and greatly enhance electron- and mass-transfer efficiency due to the electrochemically active PBA particles and NF substrate. These fabricated electrodes as multifunctional sensors achieve highly selective and sensitive glucose and H2O2 biosensing with a very wide detective linear range, extremely low limit of detection (LOD), and good stability. Among them, CoFe-PBA/Co-ZIF/NF exhibits the best sensing performance with a very wide linear range from 1.4 mu M to 1.5 mM, a high sensitivity of 5270 mu A mM(-1) cm(-2), a low LOD of 0.02 mu M (S/N = 3), and remarkable stability and selectivity toward glucose. What is more, it can realize excellent detection of glucose in human serum, demonstrating its practical applications. Furthermore, this material as a multifunctional electrochemical sensor also manifests superior detection performance against hydrogen peroxide with a wide linear range of 0.2-6.0 mM, a high sensitivity of 196 mu A mM(-1) cm(-2), and a low limit of detection of 1.08 nM (S/N = 3). The sensing mechanism for enhanced performance for glucose and H2O2 is discussed and proved by experiments in detail.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据