4.8 Article

General Nanomedicine Platform by Solvent-Mediated Disassembly/Reassembly of Scalable Natural Polyphenol Colloidal Spheres

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 12, 期 34, 页码 37914-37928

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.0c11650

关键词

polyphenol colloidal spheres; solvent-mediated; disassembly/reassembly; high drug loading; naturally renewable resource; tea catechin; phytochemicals; nanomedicines platform

资金

  1. National Natural Science Foundation of China [51373106]

向作者/读者索取更多资源

The current strategy using the assembly of medicines and active functional molecules to develop nanomedicines often requires both molecules to have a specific matched chemical molecular structure; however, this is often difficult to predict, execute, and control in practical applications. Herein, we reported a general solvent-mediated disassembly/reassembly strategy for preparing nanomedicines based on epigallocatechin gallate (EGCG) active molecules. The polyphenol colloidal spheres (CSs) were self-assembled from molecular condensed EGCG in aqueous solution but disassembled in organic solvents and reassembled in aqueous solution. The solvent-mediated disassembly and reassembly capability of CSs gave rise to the active binding of condensed EGCG to various hydrophilic and hydrophobic guest molecules. The maximum encapsulation and drug-loading rate of reassembled CSs/DOX were 90 and 44%, respectively, and the nanomedicines could reverse drug resistance of tumor cells and exhibit enhanced therapeutic effects for breast cancer. Last but not least, 37.3 g of polyphenol CSs was massively produced at one time with a yield of 74.6%, laying a solid foundation for the practical applications of reassembled nanomedicines. The present strategy leading to a general nanomedicines platform was concise and highly efficient for both hydrophilic and hydrophobic drugs, making a breakthrough for low loading dilemma of current nanomedicines, and would open up a new direction for the preparation of nanocarriers, nanocomposites, and nanomedicines from natural polyphenols.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据