4.8 Article

alpha-Lactalbumin-Based Nanofiber Dressings Improve Burn Wound Healing and Reduce Scarring

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 12, 期 41, 页码 45702-45713

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.0c05175

关键词

alpha-lactalbumin; electrospinning; nanofibrous mats; polycaprolactone; burn wounds

资金

  1. National Natural Science Foundation of China (NSFC), China [81850410554]
  2. Overseas Expertise Introduction Project for Discipline Innovation (111 Project) [D20029]
  3. VILLUM FONDEN [19175]

向作者/读者索取更多资源

Skin wound especially burn injury is a major threat for public health. One of the pursuits in the current wound healing research is to identify new promising biological materials, which can not only promote tissue repair but also reduce scar formation. In this current study, the potentials of alpha-lactalbumin (ALA), a tryptophan-rich dietary protein acting as a precursor of neurotransmitter serotonin, to promote the burn wound healing and reduce the scar formation were investigated. The ALA was initially electrospun with polycaprolactone (PCL) to accomplish electrospun nanofibrous mats (ENMs), subsequently assessed for their physicochemical attributes and wound healing efficiency on a burn rat model, and then their healing mechanisms at cellular and molecular levels were explored. The results showed that ALA and PCL were physicochemically compatible in ENMs. The average diameter of various nanofibers was within 183-344 nm. Their wettability and mechanical properties could be readily modulated by adjusting the mass ratios of ALA and PCL from 1/9 to 1/2. The selected ENMs exhibited negligible cytotoxicity and satisfactory adhesion to fibroblasts and promoting the proliferation of the fibroblasts. As compared to pristine PCL based ENMs, the composite scaffolds could accelerate the wound healing process and exhibit effects comparable to a marketed wound dressing over 16 days. Moreover, the ALA/PCL based ENMs could increase the synthesis of type I collagen and decrease the expression of alpha-smooth muscle actin, conferring that the novel wound dressings could reduce the formation of scars. Collectively, this study demonstrates that the ALA is a promising biological material and could promote the regeneration of burn skins with reduced scar formation, when being loaded on ultrafine fibrous scaffolds, mimicking the structure of the natural extra cellular matrix.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据