4.8 Article

One-Dimensional NiSe-Se Hollow Nanotubular Architecture as a Binder-Free Cathode with Enhanced Redox Reactions for High-Performance Hybrid Supercapacitors

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 12, 期 26, 页码 29302-29315

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.0c05612

关键词

hybrid; supercapacitor; NiSe-Se; nanotube architecture; conductive; electrode

资金

  1. Ministry of Human Resource and Development (MHRD), India
  2. BSRC lab, Inha University, Incheon, Republic of South Korea

向作者/读者索取更多资源

Selenium-enriched nickel selenide (NiSe-Se) nanotubes supported on highly conductive nickel foam (NiSe-Se@Ni foam) were synthesized using chemical bath deposition with the aid of lithium chloride as a shape-directing agent. The uniformly grown NiSe-Se@Ni foam, with its large number of electroactive sites, facilitated rapid diffusion and charge transport. The NiSe-Se@Ni foam electrode exhibited a superior specific capacitance value of 2447.46 F g(-1) at a current density value of 1 A g(-1) in 1 M aqueous KOH electrolyte. Furthermore, a high-energy-density pouch-type hybrid supercapacitor (HSC) device was fabricated using the proposed NiSe-Se@Ni foam as the positive electrode, activated carbon on Ni foam as the negative electrode, and a filter paper separator soaked in 1 M KOH electrolyte solution. The HSC delivered a specific capacitance of 84.10 F g(-1) at a current density of 4 mA cm(-2) with an energy density of 29.90 W h kg(-1) at a power density of 594.46 W kg(-1) for an extended operating voltage window of 1.6 V. In addition, the HSC exhibited excellent cycling stability with a capacitance retention of 95.09% after 10,000 cycles, highlighting its excellent potential for use in the hands-on applications. The real-life practicality of the HSC was tested by using it to power a red light-emitting diode.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据