4.8 Article

Multifunctional Tissue-Adhesive Cryogel Wound Dressing for Rapid Nonpressing Surface Hemorrhage and Wound Repair

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 12, 期 32, 页码 35856-35872

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.0c08285

关键词

tissue adhesion; hemostatic cryogels; quaternized chitosan; polydopamine; uncontrollable surface hemorrhage; wound healing

资金

  1. National Natural Science Foundation of China [51973172, 51673155]
  2. Natural Science Foundation of Shaanxi Province [2020JC-03, 2019TD-020]
  3. State Key Laboratory for Mechanical Behavior of Materials
  4. WorldClass Universities (Disciplines)
  5. Characteristic Development Guidance Funds for the Central Universities
  6. Opening Project of Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University [2019LHM-KFKT008]

向作者/读者索取更多资源

Cryogels with tissue adhesion have great potential as wound dressings for rapid hemostasis for uncontrollable nonpressing surface hemorrhage and wound healing, but their use has not been reported previously. Herein, we designed a series of antibacterial and antioxidant tissue-adhesive cryogels based on quaternized chitosan (QCS) and polydopamine (PDA). These cryogels had good blood cell and platelet adhesion, enrichment, and activation properties for rapid nonpressing surface hemostasis and wound healing. The cryogels exhibited outstanding mechanical strength and easy removability, antioxidant activity, and NIR photothermal-enhanced antibacterial performance. The cryogels showed much better hemostasis than gauze and gelatin sponge in a standardized strip rat liver injury model, a standardized circular rabbit liver section model, and a pig skin laceration model. Furthermore, the excellent hemostatic performance of the QCS/PDA2.0 cryogel (containing 20 mg/mL QCS and 2.0 mg/mL PDA) for coagulopathic hemorrhages was confirmed in a standardized coagulation disorder rabbit circular liver section model. In addition, the QCS/PDA2.0 cryogel promoted rapid hemostasis in a deep noncompressible wound and a much better wound healing effect than a chitosan sponge and Tegaderm film in a full-thickness skin defect model. Overall, these multifunctional tissue-adhesive cryogels with excellent hemostatic performance and enhanced wound healing properties are suitable candidates for tissue-adhesive hemostat and wound healing dressings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据