4.7 Article

An Evolve-Then-Correct Reduced Order Model for Hidden Fluid Dynamics

期刊

MATHEMATICS
卷 8, 期 4, 页码 -

出版社

MDPI
DOI: 10.3390/math8040570

关键词

hybrid analysis and modeling; Galerkin projection; proper orthogonal decomposition; long short-term memory; error correction

资金

  1. U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research [DE-SC0019290]

向作者/读者索取更多资源

In this paper, we put forth an evolve-then-correct reduced order modeling approach that combines intrusive and nonintrusive models to take hidden physical processes into account. Specifically, we split the underlying dynamics into known and unknown components. In the known part, we first utilize an intrusive Galerkin method projected on a set of basis functions obtained by proper orthogonal decomposition. We then present two variants of correction formula based on the assumption that the observed data are a manifestation of all relevant processes. The first method uses a standard least-squares regression with a quadratic approximation and requires solving a rank-deficient linear system, while the second approach employs a recurrent neural network emulator to account for the correction term. We further enhance our approach by using an orthonormality conforming basis interpolation approach on a Grassmannian manifold to address off-design conditions. The proposed framework is illustrated here with the application of two-dimensional co-rotating vortex simulations under modeling uncertainty. The results demonstrate highly accurate predictions underlining the effectiveness of the evolve-then-correct approach toward real-time simulations, where the full process model is not known a priori.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据