4.6 Article

Synergistic Effect of Chlorogenic Acid and Caffeic Acid with Fosfomycin on Growth Inhibition of a Resistant Listeria monocytogenes Strain

期刊

ACS OMEGA
卷 5, 期 13, 页码 7537-7544

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.0c00352

关键词

-

资金

  1. Villanova University

向作者/读者索取更多资源

Listeria monocytogenes, a human foodborne pathogen that causes listeriosis with high-rate mortality, has been reported to be resistant to commonly used antibiotics. New antibiotics or cocktails of existing antibiotics with synergistic compounds are in high demand for treating this multi-drug-resistant pathogen. Fosfomycin is one of the novel and promising therapeutic antibiotics for the treatment of listeriosis. However, some L. monocytogenes strains with the FosX gene were recently reported to survive from the fosfomycin treatment. This work aims to identify FosX inhibitors that can revive fosfomycin in treating resistant L. monocytogenes. Since structures and activities of the FosX protein in L. monocytogenes have been well studied, we used an integrated computational and experimental approach to identify FosX inhibitors that show synergistic effect with fosfomycin in treating resistant L. monocytogenes. Specifically, automated ligand docking was implemented to perform virtual screening of the Indofine natural-product database and FDA-approved drugs to identify potential inhibitors. An in vitro bacterial growth inhibition test was then utilized to verify the effectiveness of identified compounds combined with fosfomycin in inhibiting the resistant L. monocytogenes strains. Two phenolic acids, i.e., caffeic acid and chlorogenic acid, were predicted as high-affinity FosX inhibitors from the ligand-docking platform. Experiments with these compounds indicated that the cocktail of either caffeic acid (1.5 mg/mL) or chlorogenic acid (3 mg/mL) with fosfomycin (50 mg/L) was able to significantly inhibit the growth of the pathogen. The finding of this work implies that the combination of fosfomycin with either caffeic acid or chlorogenic acid is of potential to be used in the clinical treatment of Listeria infections.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据