4.7 Article

Noninvasive and Improved Torque and Efficiency Calculation Toward Current Advance Angle Determination for Maximum Efficiency Control of PMSM

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TTE.2019.2962333

关键词

Iron loss; maximum efficiency (ME); permanent magnet synchronous motor (PMSM); saturation; stator current vector; temperature variation; torque

向作者/读者索取更多资源

This article proposes improved mathematical models for torque and system efficiency used toward obtaining accurate current advance angle for maximizing the efficiency of an interior permanent magnet (IPM) synchronous motor. First, improved torque and efficiency calculation procedure that consider the effects of parameter variations, such as inductance, stator resistance and PM flux linkage simultaneously, and motor and inverter losses, have been developed from a combination of analytical models and practical experiments. Subsequently, an offline search procedure has been utilized to determine the optimal current angle using the improved dq-axis-based models. The novelty of the efficiency model is that the method uses preliminary noninvasive experimental tests to consider the saturation and temperature effects simultaneously and successfully determine the relationship between stator and rotor temperatures by using only controller command voltages and currents. Experimental investigations are performed on a laboratory IPM for validating the developed control method through interpolation of improved look-up tables with the derived current angle values for varying speed, torque, and temperature conditions. The effectiveness of the proposed method in improving efficiency is also verified and compared with maximum efficiency and maximum torque per ampere methods using experimental sweep tests.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据