4.6 Article

Hydration-Enhanced Lubricating Electrospun Nanofibrous Membranes Prevent Tissue Adhesion

期刊

RESEARCH
卷 2020, 期 -, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.34133/2020/4907185

关键词

-

资金

  1. National Natural Science Foundation of China [51873107, 51675296]
  2. Tsinghua University Initiative Scientific Research Program [20197050026]
  3. Tsinghua University-Peking Union Medical College Hospital Initiative Scientific Research Program [20191080593]
  4. Shanghai Municipal Education Commission Gaofeng Clinical Medicine [20171906]
  5. Shanghai Jiao Tong University Medical and Research Program [ZH2018ZDA04]
  6. Science and Technology Commission of Shanghai Municipality [18ZR1434200, 19440760400]
  7. Ng Teng Fong Charitable Foundation [202-276-132-13]

向作者/读者索取更多资源

Lubrication is the key to efficient function of human tissues and has significant impact on the comfort level. However, the construction of a lubricating nanofibrous membrane has not been reported as yet, especially using a one-step surface modification method. Here, bioinspired by the superlubrication mechanism of articular cartilage, we successfully construct hydration-enhanced lubricating nanofibers via one-step in situ grafting of a copolymer synthesized by dopamine methacrylamide (DMA) and 2-methacryloyloxyethyl phosphorylcholine (MPC) onto electrospun polycaprolactone (PCL) nanofibers. The zwitterionic MPC structure provides the nanofiber surface with hydration lubrication behavior. The coefficient of friction (COF) of the lubricating nanofibrous membrane decreases significantly and is approximately 65% less than that of pure PCL nanofibers, which are easily worn out under friction regardless of hydration. The lubricating nanofibers, however, show favorable wear-resistance performance. Besides, they possess a strong antiadhesion ability of fibroblasts compared with pure PCL nanofibers. The cell density decreases approximately 9-fold, and the cell area decreases approximately 12 times on day 7. Furthermore, the in vivo antitendon adhesion data reveals that the lubricating nanofiber group has a significantly lower adhesion score and a better antitissue adhesion. Altogether, our developed hydration-enhanced lubricating nanofibers show promising applications in the biomedical field such as antiadhesive membranes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据