4.7 Article

Association between Rumen Microbiota and Marbling Score in Korean Native Beef Cattle

期刊

ANIMALS
卷 10, 期 4, 页码 -

出版社

MDPI
DOI: 10.3390/ani10040712

关键词

Hanwoo; beef cattle; marbling; rumen microbiota; lipid metabolism

资金

  1. Rural Development Administration, Republic of Korea [PJ012031032017]

向作者/读者索取更多资源

Simple Summary The ruminal microbiome affects various metabolic processes associated with animal development; however, few studies have focused on its correlation with marbling. Results of the present study show differences in ruminal microbiomes among Hanwoo Korean beef cattle, which have low or high marbling scores. By elucidating the effect of the ruminal microbiome on the marbling of Hanwoo, differentially abundant microbial taxa, ruminal taxonomic drivers of lipid metabolism, and the correlation with meat quality indices, the present study provides insights into the potential effects of microbial factors on marbling in beef cattle. Abstract This study demonstrated the potential effects of the rumen microbiota on the deposition of intramuscular fat, known as marbling. Previous studies on fatty acid metabolism in beef cattle have mostly focused on biohydrogenating rumen bacteria, whereas those on the overall rumen microbiota-to understand their roles in marbling-have not been systematically performed. The rumen microbiota of 14 Korean beef cattle (Hanwoo), which showed similar carcass characteristics and blood metabolites but different marbling scores, were analyzed by 16S rRNA gene sequencing. The rumen samples were grouped into two extreme marbling score groups of host animals as follows: LMS, marbling score <= 4 or HMS, marbling score >= 7. Species richness tended to be higher in the HMS group, whereas the overall microbiota differed between LMS and HMS groups. RFP12, Verrucomicrobia, Oscillospira, Porphyromonadaceae, and Paludibacter were differentially abundant in the HMS group, whereas Olsenella was abundant in the LMS group. Some marbling-associated bacterial taxa also contributed to the enrichment of two lipid metabolic pathways including alpha-linolenic acid metabolism and fatty acid biosynthesis in the HMS microbiome. Taxonomic drivers of fatty acid biosynthesis, particularly in the rumen microbiome of high-marbled meat, could thus be further studied to increase the intramuscular fat content.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据