4.7 Article

Photothermally Reconfigurable Shape Memory Magnetic Cilia

期刊

ADVANCED MATERIALS TECHNOLOGIES
卷 5, 期 7, 页码 -

出版社

WILEY
DOI: 10.1002/admt.202000147

关键词

magnetic cilia; magnetic particles; photothermal heating; reconfigurable materials; shape memory polymers

资金

  1. NSF [ECCS-1542015, CMMI-1663416, CMMI-1662641]
  2. State of North Carolina

向作者/读者索取更多资源

Stimulus-responsive polymers are attractive for microactuators because they can be easily miniaturized and remotely actuated, enabling untethered operation. In this work, magnetic Fe microparticles are dispersed in a thermoplastic polyurethane shape memory polymer matrix and formed into artificial, magnetic cilia by solvent casting within the vertical magnetic field in the gap between two permanent magnets. Interactions of the magnetic moments of the microparticles, aligned by the applied magnetic field, drive self-assembly of magnetic cilia along the field direction. The resulting magnetic cilia are reconfigurable using light and magnetic fields as remote stimuli. Temporary shapes obtained through combined magnetic actuation and photothermal heating can be locked by switching off the light and magnetic field. Subsequently turning on the light without the magnetic field drives recovery of the permanent shape. The permanent shape can also be reprogrammed after preparing the cilia by applying mechanical constraints and annealing at high temperature. Spatially controlled actuation is demonstrated by applying a mask for optical pattern transfer into the array of magnetic cilia. A theoretical model is developed for predicting the response of shape memory magnetic cilia and elucidates physical mechanisms behind observed phenomena, enabling the design and optimization of ciliary systems for specific applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据