4.8 Article

The glassy solid as a statistical ensemble of crystalline microstates

期刊

NPJ COMPUTATIONAL MATERIALS
卷 6, 期 1, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41524-020-0329-2

关键词

-

资金

  1. Center for the Next Generation of Materials by Design, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences
  2. National Science Foundation [DMR-1945010]
  3. Department of Energy's Office of Energy Efficiency and Renewable Energy

向作者/读者索取更多资源

We present an alternative and, for the purpose of non-crystalline materials design, a more suitable description of covalent and ionic glassy solids as statistical ensembles of crystalline local minima on the potential energy surface. Motivated by the concept of partially broken ergodicity, we analytically formulate the set of approximations under which the structural features of ergodic systems such as the radial distribution function (RDF) and powder X-ray diffraction (XRD) intensity can be rigorously expressed as statistical ensemble averages over different local minima. Validation is carried out by evaluating these ensemble averages for elemental Si and SiO2 over the local minima obtained through the first-principles random structure sampling that we performed using relatively small simulation cells, thereby restricting the sampling to a set of predominantly crystalline structures. The comparison with XRD and RDF from experiments (amorphous silicon) and molecular dynamics simulations (glassy SiO2) shows excellent agreement, thus supporting the ensemble picture of glasses and opening the door to fully predictive description without the need for experimental inputs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据