4.8 Article

Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels

期刊

SCIENCE ADVANCES
卷 6, 期 13, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.aay1430

关键词

-

资金

  1. National Natural Science Foundation of China [51671113]
  2. Beijing Natural Science Foundation [2182024]
  3. National Key R&D program of China [2016YFB0300104]
  4. National Young 1000-Talents Program [D1101073]
  5. China Postdoctoral Science Foundation [2017M610082, 2018T110096]

向作者/读者索取更多资源

For decades, grain boundary engineering has proven to be one of the most effective approaches for tailoring the mechanical properties of metallic materials, although there are limits to the fineness and types of microstructures achievable, due to the rapid increase in grain size once being exposed to thermal loads (low thermal stability of crystallographic boundaries). Here, we deploy a unique chemical boundary engineering (CBE) approach, augmenting the variety in available alloy design strategies, which enables us to create a material with an ultrafine hierarchically heterogeneous microstructure even after heating to high temperatures. When applied to plain steels with carbon content of only up to 0.2 weight %, this approach yields ultimate strength levels beyond 2.0 GPa in combination with good ductility (>20%). Although demonstrated here for plain carbon steels, the CBE design approach is, in principle, applicable also to other alloys.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据