4.8 Article

Conformable self-assembling amyloid protein coatings with genetically programmable functionality

期刊

SCIENCE ADVANCES
卷 6, 期 21, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.aba1425

关键词

-

资金

  1. Commission for Science and Technology of Shanghai Municipality [17JC1403900]
  2. National Natural Science Foundation of China [U1932204]
  3. National Science and Technology Major Project of the Ministry of Science and Technology of China [2018YFA0902804]
  4. ShanghaiTech University
  5. 1000 Youth Talents Program
  6. Chinese Central Government

向作者/读者索取更多资源

Functional coating materials have found broad technological applications in diverse fields. Despite recent advances, few coating materials simultaneously achieve robustness and substrate independence while still retaining the capacity for genetically encodable functionalities. Here, we report Escherichia coli biofilm-inspired protein nanofiber coatings that simultaneously exhibit substrate independence, resistance to organic solvents, and programmable functionalities. The intrinsic surface adherence of CsgA amyloid proteins, along with a benign solution-based fabrication approach, facilitates forming nanofiber coatings on virtually any surface with varied compositions, sizes, shapes, and structures. In addition, the typical amyloid structures endow the nanofiber coatings with outstanding robustness. On the basis of their genetically engineerable functionality, our nanofiber coatings can also seamlessly participate in functionalization processes, including gold enhancement, diverse protein conjugations, and DNA binding, thus enabling a variety of proof-of-concept applications, including electronic devices, enzyme immobilization, and microfluidic bacterial sensors. We envision that our coatings can drive advances in electronics, biocatalysis, particle engineering, and biomedicine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据