4.8 Article

RALF1-FERONIA complex affects splicing dynamics to modulate stress responses and growth in plants

期刊

SCIENCE ADVANCES
卷 6, 期 21, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.aaz1622

关键词

-

资金

  1. National Natural Science Foundation of China [NSFC-31871396, 31571444, 31400232]
  2. Young Elite Scientist Sponsorship Program by CAST [YESS20160001]
  3. China Postdoctoral Science Foundation [2019 M662763]

向作者/读者索取更多资源

The environmentally responsive signaling pathways that link global transcriptomic changes through alternative splicing (AS) to plant fitness remain unclear. Here, we found that the interaction of the extracellular rapid alkalinization FACTOR 1 (RALF1) peptide with its receptor FERONIA (FER) triggered a rapid and massive RNA AS response by interacting with and phosphorylating glycine-rich RNA binding protein7 (GRP7) to elevate GRP7 nuclear accumulation in Arabidopsis thaliana. FER-dependent GRP7 phosphorylation enhanced its mRNA binding ability and its association with the spliceosome component U1-70K to enable splice site selection, modulating dynamic AS. Genetic reversal of a RALF1-FER-dependent splicing target partly rescued mutants deficient in GRP7. AS of GRP7 itself induced nonsense-mediated decay feedback to the RALF1-FER-GRP7 module, fine-tuning stress responses, and cell growth. The RALF1-FER-GRP7 module provides a paradigm for regulatory mechanisms of RNA splicing in response to external stimuli.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据