4.8 Article

Nanoparticle interactions with immune cells dominate tumor retention and induce T cell-mediated tumor suppression in models of breast cancer

期刊

SCIENCE ADVANCES
卷 6, 期 13, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.aay1601

关键词

-

资金

  1. Jayne Koskinas Ted Giovanis Foundation for Health and Policy
  2. NIH [5R25GM109441]
  3. NIH/NCI [5P30 CA006973]

向作者/读者索取更多资源

The factors that influence nanoparticle fate in vivo following systemic delivery remain an area of intense interest. Of particular interest is whether labeling with a cancer-specific antibody ligand (active targeting) is superior to its unlabeled counterpart (passive targeting). Using models of breast cancer in three immune variants of mice, we demonstrate that intratumor retention of antibody-labeled nanoparticles was determined by tumor-associated dendritic cells, neutrophils, monocytes, and macrophages and not by antibody-antigen interactions. Systemic exposure to either nanoparticle type induced an immune response leading to CD8(+) T cell infiltration and tumor growth delay that was independent of antibody therapeutic activity. These results suggest that antitumor immune responses can be induced by systemic exposure to nanoparticles without requiring a therapeutic payload. We conclude that immune status of the host and microenvironment of solid tumors are critical variables for studies in cancer nanomedicine and that nanoparticle technology may harbor potential for cancer immunotherapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据